

ATS4 AppModel

Architecture Overview

5/29/2009

Introduction

This document describes the overall architecture and design of the ATS4 AppModel tool. This includes the

basic design, technologies , the inputs and outputs and files & directories. The detailed design with class

diagrams is not documented here as it is laborious to keep up to date with the implementation and would

be very complex due to large number of classes. See Javadocs and the source code to get an understanding

of the detailed design.

Note: Since the tool is a standalone application which is not deployed on parallel machines and does not

have any distributed components, the difference between architecture and design is vague. It could be said

as well that this document describes the high-level design.

Basic design

This section documents the overall internal architecture without listing any concrete classes.

The architecture of the ATS4 AppModel application follows well known patterns and practices. The

principal pattern is the widely used Model-View-Controller (MVC) design pattern illustrated in the following

figure.

When the user operates on Views, they post Events to EventQueue , which may deliver them to one or

more interested Commands (aka Controllers) for processing. The Commands may change the state of the

Model, which triggers change notifications - to which the views react by updating themselves. The

Commands may also directly set view properties for which there is no respective model property. The

views, events and commands are grouped by the perspective, even though some events trigger Commands

in several views.

The Model layer forms a, mostly view technology independent, engine that contains data for the ATS4

AppModel project being worked on, and also view-independent algorithms to operate on the data. The

Model layer is divided into two parts: the Domain Model and the GraphEditorModels. The former is

independent of the view technology, the latter maintains the graph structure for the JGraph library used for

graph visualization. There is one GraphEditorModel instance per each model (system model, application

model, sub-model).

The Model / Engine layer utilizes various adapters and Data Access Objects (DAOs) to operate on external

data and systems.

Technologies

ATS4 AppModel is implemented in Java (1.6 or later required), in addition to which the following

technologies have been used:

Technology Usage

Swing The graphical user interface is implemented using Java’s

standard Swing technology.

JGraph

(www.jgraph.com)

Visualization of the models as graphs. The engine part mostly

is independent of JGraph but the view and controller layers

depend on it.

iText

(http://www.lowagie.com/iText/)

Generation of RTF documents (test specifications)

Log4j Logging of messages; mostly to help troubleshooting

Inputs and outputs

This section defines the data flows into and out of the application, and the involved components.

Component Description

TestScriptBuilder Generates a test script from the model in

ATS4 AppModel’s internal XML format. The

script is provided to a test engine specific

adapter plugin that converts it into test

engine specific format.

TestEngineAdapter plugin An adapter plugin that isolates ATS4

AppModel from test engine specific details

and provides a common interface for

executing scripts and monitoring test

progress. The default implementation uses an

XSL stylesheet to translate the script to

appropriate format. The default

implementation writes the translated script

into a file and does not communicate with

any test engine.

InsertImageFromUIToolCommand Implements a simple and generic mechanism

for using any paint tool to draw images for

system events. When the user creates and

stores an image with the paint tool, this

component imports it into the model using

ImageGallery (see below).

Composer Generates a localized test specification

document for manual testing. The content of

the document is entirely based on the model.

ImageGallery Manages the images of the model. Can import

images from external sources (eg when saved

from a painting tool).

Project DAO

(Data Access Object)

Handles loading and saving of the project

from/to the disk.

LanguageVariantFactory Provides dictionaries for all language

variants defined in the localisation file. The

localisation file defines translations for

logical names in one or more languages.

Keyword DAO and keyword file parser These components let ATS4 AppModel access

keyword files. Keyword files define engine

specific keywords and their verbal

translations (“phrases”).

External interfaces

This section documents the TestEngineAdapter interface in more detail since it must be understood to be

able to develop a test engine plugin.

A new test engine plugin may be implemented by extending the class AbstractTestEngineAdapter which

provides the basic functionality for event and settings handling. This abstract base class saves a lot of

implementation work and unifies the certain plugin functions, and thus is is NOT recommended that

plugins are developed against the plain TestEngineAdapter interface. See the API documentation for the

TestEngineAdapter interface for more information.

 The plugins are installed in the "plugins" folder as a JAR package that has the following attributes set in it's

manifest file:

Attribute Description

Class-Path List of JAR libraries required by the plugin, given as

relative to plugins folder.

ATS4AppModel-Plugin-Name The plugin name that is displayed in GUI.

ATS4AppModel-Plugin-Class Fully qualified class name of the adapter class.

 Further reading: Java JAR Tutorial

 http://java.sun.com/docs/books/tutorial/deployment/jar/

 You may use the PluginManager class (requires Log4j in the classpath) to load and test the plugin. When

finished, drop the plugin jar in the plugins folder and the libraries required by it in the location as defined

in the Class-Path attribute. Activate the plugin by selecting it in the ATS4 AppModel's settings dialog.

Files and directories

This section documents the relevant files and directories below the ATS4AppModel directory.

File or directory Purpose

/readme.txt Installation and startup instructions

/license.txt The license statements for ATS4 AppModel itself

/ATS4AppModel.bat Startup scripts for Windows and Unix shells (see readme.txt for

/ATS4AppModel.sh startup instructions)

/ATS4AppModel.jar The Java binary code of the ATS4 AppModel application itself

doc/ Accompanying usage documentation in PDF format (introduction,

self-learning etc).

lib/ Any libraries used by the ATS4 AppModel application

licenses/ Licenses of the 3
rd

 party libraries

logs/ Log files. Created at first run

models/ Default storage location for ATS4 AppModel projects/models

resources/ Various resources needed by the application:

Configuration files, icons, schema files, localization files, keyword

files (see below)

results/ Default location for test result files

scripts/ Default location for generated (exported) test scripts

specifications/ Default location for generated test specifications (rtf)

plugins/ Drop test engine plugins in this directory to make them available

for ATS4 AppModel. Plugins are discovered automatically when

ATS4 AppModel starts. The plugin to be used can be selected in

the settings dialog.

resources/keywords.xml All files matching the keyword*.xml wildcard pattern in this

directory are automatically picked up at startup and used to build

a list of known keywords.

resources/settings.properties Configuration properties. Overwritten by ATS4 AppModel on

shutdown. Make any changes only when the application is not

running.

resources/localisation.txt The default localization file containing logical names and their

verbal translations for each supported locale.

resources/language.properties All messages of the ATS4 AppModel application

resources/logging.properties Configuration file for Log4j logging library

