
ATS4 AppModel
Integration Guide



Content

• Introduction

• The Default Plugin

• ATS4 AppModel Common library

• Deploying a plugin in ATS4 AppModel

• Keywords

• Localisation• Localisation

• General Settings



Introduction

• ATS4 AppModel is based on approach that allows any keyword based test engine to be 
used for executing the tests.

• In this context, ”test engine” refers to a 3rd party software that is used to drive the target 
software or device to test it in automatical manner, by using scripts or remote interface.

• ATS4 AppModel features a simple plugin architecture for adding test engine support

• Custom test engine adapters may be developed by implementing a simple interface and 
deploying the plugin as a single package

• ATS4 AppModel Common Library contains the required Java classes and interfaces for 
plugin development

ATS4 AppModel

ATS4 Plugin JAR
Test Engine Plugin

Test engine adapter 
implementation

Test execution 
controller



The Default Plugin

• ATS4 AppModel includes a Default Plugin that supports test script exporting and 
test ”execution” to specified output file.

• Script generation is based on XSLT stylesheets, which enables end users to 
change the resulting script format with a reasonable effort. No programming 
required, just set the desired stylesheet in the plugin settings.

Default Plugin

• Provides the basic functionality for script generation and thus it can also be used 
as a base for custom test engine adapters.

ATS4 AppModel

(internal data model)

XSLT Stylesheet

(defined by end 
user/developer)

Script in test engine 
specific format

(format defined by 
test engine vendor)



ATS4 AppModel Common Library

• A separate distribution for plugin developers. Contains the library JAR, API 
documentation and general guidelines.

• ATS4AppModel-common.jar

• To use the plugin interface and classes in your own code, simply add the JAR in 
your project’s classpath.

• The best starting point is the class AbstractTestEngineAdapter, which is the base 
implementation of TestEngineAdapter interface providing common functionality 
such as settings and event handling.

• Also, the DefaultPlugin class that extends AbstractTestEngineAdapter can be 
used as a base if default XSLT based script generation is desired.



Deploying a plugin in ATS4 AppModel

• The plugin is deployed as a standard Java JAR package with required metadata 
defined in it’s manifest file.

• http://java.sun.com/docs/books/tutorial/deployment/jar/

• Manifest attributes for ATS4 AppModel plugins are
• ATS4AppModel-Plugin-Name (required, ”friendly name” of the plugin)

• ATS4AppModel-Plugin-Class (required, fully qualified class name of the adapter)

(optional, whitespace separated list of required libraries)• Class-Path (optional, whitespace separated list of required libraries)

• Drop the plugin JAR in the plugins folder under the ATS4 AppModel installation 
folder. The folder may also contain additional libraries, only JARs with above 
attributes are treated as plugins.

• If plugin is based on AbstractTestEngineAdapter, it’s settings are persisted 
automatically in the plugins folder. Settings file is named using the adapter class 
name, e.g. AcmeTestEngineAdapter.properties.



Keywords

• In ATS4 AppModel, the test engine commands are called keywords. 
Since different test engines may use different keywords, a plugin must 
typically be delivered with a set of keywords applicable with it.

• Keywords are defined in XML files located in the resources folder under 
the ATS4 AppModel installation folder. Keywords.xsd defines the format 
of the file.of the file.

• Multiple keyword files can be added, files are identified by the prefix 
Keywords-, e.g. ”Keywords-AcmePlugin.xml”

• Each keyword may be associated with several phrases that are used 
when generating the test script automatically based on the event 
descriptions.



Localisation

• ATS4 AppModel supports language independent modeling so that a single 
model can be used with different language variants of the UI.

• Localisation of UI elements is based on usage of variables or logical 
names that are translated into actual text visible in the UI. For example, 
#softkey_options# may stand for ”Options” (English) and ”Valinnat” 
(Finnish), depending on the selected language variant.(Finnish), depending on the selected language variant.

• The localisation data is stored in the localisation.txt located in the 
resources folder under the ATS4 AppModel’s installation folder. It can be 
changed or edited to match the UI that is being modelled.

• Localisation file is a tab separated text file, specifying the localisation 
variables on rows and their language variants on columns. The first line in 
the file defines the language variant names (”cell” 0:0 is empty).



General Settings

• ATS4 AppModel settings are stored in the file settings.properties located 
in the resources folder under the installation folder.

• Settings file can be edited freely with a text editor to fine-tune the settings 
that are not editable through the Settings dialog.


